Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391991

RESUMO

One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).


Assuntos
Técnicas Biossensoriais , Voo Espacial , Humanos , Hidrocortisona , Desenho de Equipamento , Desidroepiandrosterona
2.
Front Physiol ; 14: 1322852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288353

RESUMO

Introduction: Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The in vitro cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions. A novel two-valve reaction tube (RT) has been developed to enable the execution of the CRA on the International Space Station (ISS). Methods: In a comprehensive test campaign, we assessed the suitability of three materials (silicone, C-Flex, and PVC) for the RT design in terms of biochemical compatibility, chemical stability, and final data quality analysis. Furthermore, we thoroughly examined additional quality criteria such as safety, handling, and the frozen storage of antigens within the RTs. The validation of the proposed crew procedure was conducted during a parabolic flight campaign. Results: The selected material and procedure proved to be both feasible and secure yielding consistent and dependable data outcomes. This new hardware allows for the stimulation of blood samples on board the ISS, with subsequent analysis still conducted on the ground. Discussion: The resultant data promises to offer a more accurate understanding of the stress-induced neuroendocrine modulation of immunity during space travel providing valuable insights for the scientific community. Furthermore, the versatile nature of the RT suggests its potential utility as a testing platform for various other assays or sample types.

3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430601

RESUMO

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Suturas , Queratinócitos/fisiologia , Procedimentos Neurocirúrgicos
4.
NPJ Microgravity ; 7(1): 56, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934056

RESUMO

The target of human flight in space has changed from permanence on the International Space Station to missions beyond low earth orbit and the Lunar Gateway for deep space exploration and Missions to Mars. Several conditions affecting space missions had to be considered: for example the effect of weightlessness and radiations on the human body, behavioral health decrements or communication latency, and consumable resupply. Telemedicine and telerobotic applications, robot-assisted surgery with some hints on experimental surgical procedures carried out in previous missions, had to be considered as well. The need for greater crew autonomy in health issues is related to the increasing severity of medical and surgical interventions that could occur in these missions, and the presence of a highly trained surgeon on board would be recommended. A surgical robot could be a valuable aid but only inasfar as it is provided with multiple functions, including the capability to perform certain procedures autonomously. Space missions in deep space or on other planets present new challenges for crew health. Providing a multi-function surgical robot is the new frontier. Research in this field shall be paving the way for the development of new structured plans for human health in space, as well as providing new suggestions for clinical applications on Earth.

5.
Cell Mol Life Sci ; 78(23): 7795-7812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714361

RESUMO

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.


Assuntos
Apoptose , Dano ao DNA , Regulação da Expressão Gênica , Epitélio Pigmentado da Retina/efeitos dos fármacos , Voo Espacial/métodos , Ubiquinona/análogos & derivados , Ausência de Peso , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ubiquinona/farmacologia
6.
ACS Appl Mater Interfaces ; 13(34): 40200-40213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410709

RESUMO

For their remarkable biomimetic properties implying strong modulation of the intracellular and extracellular redox state, cerium oxide nanoparticles (also termed "nanoceria") were hypothesized to exert a protective role against oxidative stress associated with the harsh environmental conditions of spaceflight, characterized by microgravity and highly energetic radiations. Nanoparticles were supplied to proliferating C2C12 mouse skeletal muscle cells under different gravity and radiation levels. Biological responses were thus investigated at a transcriptional level by RNA next-generation sequencing. Lists of differentially expressed genes (DEGs) were generated and intersected by taking into consideration relevant comparisons, which led to the observation of prevailing effects of the space environment over those induced by nanoceria. In space, upregulation of transcription was slightly preponderant over downregulation, implying involvement of intracellular compartments, with the majority of DEGs consistently over- or under-expressed whenever present. Cosmic radiations regulated a higher number of DEGs than microgravity and seemed to promote increased cellular catabolism. By taking into consideration space physical stressors alone, microgravity and cosmic radiations appeared to have opposite effects at transcriptional levels despite partial sharing of molecular pathways. Interestingly, gene ontology denoted some enrichment in terms related to vision, when only effects of radiations were assessed. The transcriptional regulation of mitochondrial uncoupling protein 2 in space-relevant samples suggests perturbation of the intracellular redox homeostasis, and leaves open opportunities for antioxidant treatment for oxidative stress reduction in harsh environments.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Nanopartículas Metálicas/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Antioxidantes/química , Linhagem Celular , Cério/química , Radiação Cósmica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Gravitação , Camundongos , Fibras Musculares Esqueléticas/efeitos da radiação , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Proteína Desacopladora 2/metabolismo
7.
Front Microbiol ; 12: 641387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868198

RESUMO

As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.

8.
Nat Commun ; 11(1): 5523, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173035

RESUMO

Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Exobiologia , Gravitação , Metais Terras Raras/metabolismo , Bacillus subtilis/metabolismo , Cupriavidus/metabolismo , Microbiologia Industrial , Marte , Mineração , Lua , Silicatos , Sphingomonas/metabolismo , Ausência de Peso
9.
Front Microbiol ; 11: 579156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154740

RESUMO

Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.

10.
Astrobiology ; 20(8): 935-943, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267726

RESUMO

Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism Caenorhabditis elegans has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting C. elegans experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.


Assuntos
Adaptação Fisiológica , Caenorhabditis elegans/fisiologia , Exobiologia/instrumentação , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Descondicionamento Cardiovascular , Desenho de Equipamento , Exobiologia/métodos , Modelos Animais , Músculos/fisiologia , Simulação de Ausência de Peso/instrumentação , Simulação de Ausência de Peso/métodos
11.
Sci Rep ; 9(1): 8343, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171801

RESUMO

In the frame of the VITA mission of the Italian Space Agency (ASI), we addressed the problem of Space osteoporosis by using human blood-derived stem cells (BDSCs) as a suitable osteogenic differentiation model. In particular, we investigated proteomic and epigenetic changes in BDSCs during osteoblastic differentiation induced by rapamycin under microgravity conditions. A decrease in the expression of 4 embryonic markers (Sox2, Oct3/4, Nanog and E-cadherin) was found to occur to a larger extent on board the ISS than on Earth, along with an earlier activation of the differentiation process towards the osteogenic lineage. The changes in the expression of 4 transcription factors (Otx2, Snail, GATA4 and Sox17) engaged in osteogenesis supported these findings. We then ascertained whether osteogenic differentiation of BDSCs could depend on epigenetic regulation, and interrogated changes of histone H3 that is crucial in this type of gene control. Indeed, we found that H3K4me3, H3K27me2/3, H3K79me2/3 and H3K9me2/3 residues are engaged in cellular reprogramming that drives gene expression. Overall, we suggest that rapamycin induces transcriptional activation of BDSCs towards osteogenic differentiation, through increased GATA4 and Sox17 that modulate downstream transcription factors (like Runx2), critical for bone formation. Additional studies are warranted to ascertain the possible exploitation of these data to identify new biomarkers and therapeutic targets to treat osteoporosis, not only in Space but also on Earth.


Assuntos
Medicina Aeroespacial , Epigênese Genética , Osteogênese , Osteoporose/fisiopatologia , Proteoma , Ausência de Peso , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA4/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoporose/genética , Osteoporose/metabolismo , Fatores de Transcrição Otx/metabolismo , Proteômica , Fatores de Transcrição SOXF/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição da Família Snail/metabolismo
12.
Nanomedicine (Lond) ; 13(22): 2821-2833, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334476

RESUMO

AIM: Oxidative stress (OS) is strictly associated with senescence/pathogenesis of biological systems. As putative countermeasure to environmental OS, cerium oxide nanoparticles (nanoceria [NC]) were administered to muscle cells on ground and aboard the International Space Station. MATERIALS & METHODS: Transcriptional analyses were conducted through microarray technology and hierarchical clustering. Venn diagram and gene ontology analyses were also performed on selected gene lists. RESULTS: Adaptive responses to both NC administration and to permanence in real microgravity conditions occurred. Enrichment in the biological processes related to aging, body fat development and mesodermal tissue proliferation for NC-treated samples were found. CONCLUSION: Nanotechnology antioxidants promise applications to pathological conditions governed by OS on Earth and in life-hostile environments (low Earth orbit and deep space).


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Regulação da Expressão Gênica/genética , Músculos/citologia , Animais , Linhagem Celular , Humanos , Nanopartículas/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Propriedades de Superfície
13.
Mol Carcinog ; 57(11): 1640-1650, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30084175

RESUMO

Altered cell polarity and migration are hallmarks of cancer and metastases. Here we show that inactivation of the retinoblastoma gene (Rb) tumor suppressor causes defects in tissue closure that reflect the inability of Rb null epithelial cells to efficiently migrate and polarize. These defects occur independently of pRB's anti-proliferative role and instead correlate with upregulation of RhoA signaling and mislocalization of apical-basal polarity proteins. Notably, concomitant inactivation of tp53 specifically overrides the motility defect, and not the aberrant polarity, thereby uncovering previously unappreciated mechanisms by which Rb and tp53 mutations cooperate to promote cancer development and metastases.


Assuntos
Movimento Celular/genética , Polaridade Celular/genética , Células Epiteliais/metabolismo , Proteína do Retinoblastoma/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Fase Aguda/metabolismo , Animais , Inativação Gênica , Humanos , Camundongos , Mutação , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
Sci Rep ; 6: 35298, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748415

RESUMO

During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.


Assuntos
Citoesqueleto de Actina , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Processamento Alternativo , Animais , Biomarcadores/metabolismo , Adesão Celular , Comunicação Celular , Membrana Celular/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Pulmão/embriologia , Pulmão/metabolismo , Células MCF-7 , Camundongos , Fenótipo , Fosforilação , Pseudópodes/patologia , Alvéolos Pulmonares/metabolismo , Pele/embriologia , Pele/metabolismo , Resultado do Tratamento , Regulação para Cima , Cicatrização
15.
Oncotarget ; 7(2): 1808-25, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26689989

RESUMO

The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.


Assuntos
Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Renais/genética , Proteínas dos Microfilamentos/genética , Oxirredutases/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Invasividade Neoplásica , Oncogenes/genética , Oxirredutases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
16.
Breast Cancer Res ; 14(5): R124, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971274

RESUMO

INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer. METHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death. RESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size. CONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas dos Microfilamentos/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Estudos de Coortes , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Prognóstico , Isoformas de Proteínas , Reprodutibilidade dos Testes , Fatores de Risco , Análise de Sobrevida , Carga Tumoral
17.
PLoS Genet ; 7(8): e1002218, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876675

RESUMO

Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética
18.
J Cell Sci ; 124(Pt 13): 2120-31, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21670198

RESUMO

We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Migração Transendotelial e Transepitelial , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fator Estimulador de Colônias de Macrófagos/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos SCID , Proteínas dos Microfilamentos , Invasividade Neoplásica , Metástase Neoplásica , Isoformas de Proteínas/metabolismo , Ratos
19.
Clin Exp Metastasis ; 28(6): 515-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21484349

RESUMO

Mena, an actin regulatory protein, functions at the convergence of motility pathways that drive breast cancer cell invasion and migration in vivo. The tumor microenvironment spontaneously induces both increased expression of the Mena invasive (Mena(INV)) and decreased expression of Mena11a isoforms in invasive and migratory tumor cells. Tumor cells with this Mena expression pattern participate with macrophages in migration and intravasation in mouse mammary tumors in vivo. Consistent with these findings, anatomical sites containing tumor cells with high levels of Mena expression associated with perivascular macrophages were identified in human invasive ductal breast carcinomas and called TMEM. The number of TMEM sites positively correlated with the development of distant metastasis in humans. Here we demonstrate that mouse mammary tumors generated from EGFP-Mena(INV) expressing tumor cells are significantly less cohesive and have discontinuous cell-cell contacts compared to Mena11a xenografts. Using the mouse PyMT model we show that metastatic mammary tumors express 8.7 fold more total Mena and 7.5 fold more Mena(INV) mRNA than early non-metastatic ones. Furthermore, Mena(INV) expression in fine needle aspiration biopsy (FNA) samples of human invasive ductal carcinomas correlate with TMEM score while Mena11a does not. These results suggest that Mena(INV) is the isoform associated with breast cancer cell discohesion, invasion and intravasation in mice and in humans. They also imply that Mena(INV) expression and TMEM score measure related aspects of a common tumor cell dissemination mechanism and provide new insight into metastatic risk.


Assuntos
Neoplasias da Mama/patologia , Proteínas do Citoesqueleto/metabolismo , Neoplasias Mamárias Experimentais , Metástase Neoplásica/patologia , Isoformas de Proteínas/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Adesão Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos SCID , Proteínas dos Microfilamentos , Metástase Neoplásica/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Células Tumorais Cultivadas
20.
PLoS One ; 5(12): e15852, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209853

RESUMO

hMena and the epithelial specific isoform hMena(11a) are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a) expression and phosphorylates hMena(11a), suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a) in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a) overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a) expression and hMena(11a) phosphorylation. On the other hand, hMena/hMena(11a) knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a) knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a) as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.


Assuntos
Neoplasias da Mama/metabolismo , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Pessoa de Meia-Idade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...